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Abstract. The functional equation

y(qt) = 1

4q
[y(t + 1) + y(t − 1) + 2y(t)] (0 < q < 1) t ∈ R

is associated with the appearance of spatially chaotic structures in amorphous (glassy) materials.
Continuous compactly supported solutions of the above equation are of special interest. We shall
show that there are no such solutions for 0< q < 1

2 , whereas such a solution exists for almost
all 1

2 < q < 1. The words ‘for almost allq ’ in the previous sentence cannot be omitted. There
are exceptional values ofq in the interval [12 , 1] for which there are no integrable solutions.

For example,q = (
√

5 − 1)/2 ≈ 0.618, which is the reciprocal of the ‘golden ratio’ is such
an exceptional value. More generally, ifλ is any Pisot–Vijayaraghavan number, or any Salem
number, thenq = λ−1 is an exceptional value.

1. Introduction and formulation of the main result

1.1. Physical background

Since the establishment of the KAM theory (Arnold and Avez 1968, Moser 1973) for
Hamiltonian dynamics and the discovery of strange attractors by Ruelle and Takens (1971)
for dissipative dynamics, nonlinear dynamics has become an intensively studied field in
physics. One of the most interesting features of nonlinear dynamics is the existence of
chaotic motion which can occur e.g. in Hamiltonian systems with more than one degree of
freedom. Although Hamiltonian equations of motion are deterministic, there exist initial
points x(0) = (r1(0), . . . , rs(0); p1(0), . . . , ps(0)) ∈ R2s of finite Lebesgue measure in
the phase space of a particle system withs degrees of freedom for which the trajectories
x(t, x(0)) are chaotic in time. The chaotic behaviour is best described for two-dimensional,
nonlinear mapsT :

T : (xn, yn) → (xn+1, yn+1) n ∈ Z (1)

with (xn, yn) ∈ R2. This corresponds to a dynamical system with discrete timen. The
chaotic behaviour of the dynamics defined by (1) originates from the embedding of the
Bernoulli shift (Moser 1973), i.e. there exist:

(i) an alphabetA = {a1, a2, . . .} (which depends onT )
(ii) a domainG ⊂ R2 and an embedding

ϕ : G → S (2)
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whereS is the space of doubly-infinite sequencesσ of symbolsσn ∈ A

S = {σ = (. . . σ−2, σ−1, σ0, σ1, σ2 . . .)|σn ∈ A} (3)

(iii) a symbolic dynamical system (Bernoulli shift)

s : σ ∈ S → s(σ ) =: σ ′ ∈ S (4)

where

σ ′
m := (σ ′)m = σm−1

such that the original dynamicsT restricted to the domainG ⊂ R2 can be obtained from
the symbolic dynamics as follows:

T |G = ϕ−1 ◦ s ◦ ϕ. (5)

Equation (5) is probably one of the most important results for nonlinear chaotic
dynamics. Choosing for the initial sequenceσ (0) a random sequence of symbolsσn ∈ A,
the symbolic dynamicss generates new sequencesσ (ν) = sν(σ (0)), ν ∈ Z which are
random and which result in a chaotic dynamics ofT due to (5). One of us (Reichert and
Schilling 1985, Schilling 1992) has recently shown that chaotic behaviour is not restricted
to temporal phenomena, but may also occur in space. This spatial chaos has been used in
order to interpret the existence of amorphous structures in solid materials. Let us consider a
system ofN particles with coordinatesrn ∈ R, n = 1, 2, . . . , N . The particles will interact
with each other. The corresponding potential energy isV (r1, r2, . . . , rN). A special type of
configurationsr(α) = (r

(α)

1 , r
(α)

2 , . . . , r
(α)
N ), α = 1, 2, . . . , M(N) are the solutions of

∂V

∂rn

(r) = 0 (6)

i.e. r(α) are stationary configurations. For a certain class of functionsV it was proven
(Reichert and Schilling 1985, Schilling 1992) that forN = ∞ there exists an alphabet
A = {+, −} such that there is a one-to-one correspondence betweenr(α) and all doubly-
infinite sequencesσ = (. . . σ−2, σ−1, σ0, σ1, σ2 . . .), σn ∈ A. This result means that the
particle positions in a stationary configurationr(α) can be obtained fromσ :

r(α)
n = (f (σ ))n (7)

whereσ depends onα. Choosing again a random sequenceσ , results in a spatially chaotic
configurationr(α) given by (7).

Since many physical quantities, e.g. the distance between particles, excitation energies,
etc depend on the coordinatesr(α)

n , these quantities are uniquely specified byσ due to (7).
For a certain class of potentialsV (Reichert and Schilling 1985, Schilling 1992), one finds
a linear relationship. Let1n be one of these local physical quantities. Then it has been
shown that

1n(r
(α)) =

∞∑
j=1

ηj (σn+j − σn−j−1) n ∈ Z (8)

where 0< η < 1 andσn = σn(α).
Here a comment is in order. The condition 0< η < 1 follows from the energetic

stability of the model considered and for that special case the one-to-one correspondence
betweenr(α) and σ(α) only holds for 0 < η < 1

3. For more details see Reichert and
Schilling (1985) and Schilling (1992). Since there is no general reason why this must be
fulfilled for other models, we will discuss the full range 0< η < 1, for which 1n(r

(α)) is
finite.
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Since almost all sequencesσ are neither periodic nor almost periodic, the values1n

for n ∈ Z will be distributed in a non-trivial manner. For givenα, which determinesσ
uniquely, the corresponding distribution function is

Pσ (1) = lim
N→∞

1

2N

N∑
n=−N

δ(1 − 1n(σ)) (9)

where1n(σ) is defined by the right-hand side of (8). For a generic sequenceσ where the
symbols+ and− occur with probability1

2, it has been assumed (Schilling 1992) that there
exists a kind of ‘ergodicity’ (also called ‘self-averaging’ in physics) which leads to

Pσ (1) =
∑

σ

w(σ)δ(1 − 10(σ )) =: P(1) (10)

for almost allσ . The probabilityw(σ) is given by

w(σ) =
∏
n

w0(σn)

with

w0(σn) ≡ 1
2 for σn ∈ {+, −}. (11)

Sinceσn is interpreted now as a random variable it is easy to derive afunctional equation
for P(1) which is (Schilling 1992)

P(η1) = 1

4η
{2P(1) + P(1 + 2) + P(1 − 2)}. (12)

Because the distribution functionP(1) describes the distribution of, for example, nearest
distances, excitation energies, etc, it is of physical importance. In the case of excitation
energies, the correspondingP(1) determines the corresponding specific heat. Therefore, it
is of primary interest to study the solutions of (12) as a function ofη which is a parameter
uniquely determined by the functionV (Reichert and Schilling 1985). In line with our
assumptions,compactly supported continuous solutionsof (12) are of special interest.

1.2. Formulation of the main result

Rewrite (12) in the form

y(qt) = 1

4q
[y(t + 1) + y(t − 1) + 2y(t)] 0 < q < 1 (13)

with η replaced byq in order to stress the analogy withq-difference equations theory.
The existence and non-existence of continuous compactly supported solutions of (13) (as a
function ofq) was intensively studied in Baron (1988), Baron and Volkmann (1993), Baron
et al (1994), Morawiec (1993) and Förg-Rob (1994).

Equation (13), rewritten in the form

y(t) = λ[ 1
4y(λt − 1) + 1

2y(λt) + 1
4y(λt + 1)] (14)

whereλ = 1/q, is a special case of the two-scale difference equation or refinement equation

y(t) =
l∑

j=0

ajy(αt − βj ) α > 1 βj ∈ R (15)

studied in Daubechies and Lagarias (1991), Derfelet al (1995) and Derfel (1989).
An absolutely integrable functiony(t) ∈ L1(−∞, ∞) is called anL1-solution of (15),

if it satisfies (15) for almost allt ∈ R.
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Denote1 = (1/α)
∑l

j=0 aj and suppose that1 = 1, which holds in case of (14). The
following important result was proved in Daubechies and Lagarias (1991): provided1 = 1,
any L1-solution of (15) is compactly supported and unique (up to normalization).

A similar result concerning equation (13) was proved in Baron and Volkmann (1993).
The non-existence of compactly supported continuous solutions for ‘small’ values of

q was repeatedly mentioned in the the literature. Such a non-existence result was proved
for 0 < q < 1

3 by one of us, then for 0< q <
√

2 − 1 ≈ 0.414 by Baron (1994), for

0 < q < (1 − 3
√

2 + 3
√

4)/3 ≈ 0.442 by Morawiec (1993), and recently for 0< q < 1
2 by

Baronet al (1994).
On the other hand, except for the casesq = 2−1/n, n ∈ N, no non-trivial solutions of

(13) have been known up till now.
(If q = 1

2 theny1/2(t) = max{0, 1−|t |}; this is the ScḧonbergB1-spline. If q = ( 1
2)1/n,

n = 2, 3, . . . then

y
2− 1

k
(t) = B1(t) ∗ B1(2

− 1
k t) ∗ · · · ∗ B1(2

− k−1
k t)

(Baronet al 1994)).
The goal of this paper is to prove that:
(i) A continuous compactly supported solution of (13) exists for almost all1

2 6 q < 1.
Moreover, there exists a sequenceβk → 1, such that for almost allq ∈ (βk, 1)

equation (13) possesses a compactly supported solution with 2(k − 1) derivatives.
(ii) The words for ‘almost all’ in the above statement cannot be omitted. There are

exceptional values ofq in the interval 1
2 < q < 1, for which noL1-solution of (13) exists.

For instance,q1 =
√

5−1
2 ≈ 0.618 (the reciprocal of the ‘golden ratio’) andq2 ≈ 0.755 (the

reciprocal of the positive root of the equationx3 − x − 1 = 0) are such exceptional values.
More generally, ifλ is any Pisot–Vijayaraghavan number, or any Salem number, then

q = λ−1 is an exceptional value.
Above result combined with the one of Baronet al (1994) shows that in the parameter

interval 0< q < 1 the pointq = 1
2 defines the threshold between the existence and the non-

existence of continuous compactly supported solutions of (13). This exhausts the problem
of the existence of continuous compactly supported solutions of (13), in some sense.

The rest of the paper is organized as follows. Statements (i) and (ii) are proved in
section 4 (theorem 5 and theorem 4, respectively). The proof is based on Erdös’s (1939,
1940) results on infinite Bernoulli convolutions, and recent developments regarding Erdös’s
problem due to Solomyak (1995). Fourier analysis of (13) and its reduction to Erdös’s
problem is given in section 2.

In section 3 we obtain upper bounds for the smoothness of solutions of (13). Baron
et al’s (1994) theorem on the non-existence of bounded,L1-solutions, for 0< q < 1, is
obtained as a consequence of these estimates.

When this work was close to completion an interesting related paper (Borwein and
Girgensohn 1994) was brought to our attention by Professor K Baron. Borwein and
Girgensohn’s approach is similar to ours and, in particular, theorem 4(a) was proved in
Borwein and Girgensohn (1994). However, our existence theorem is stronger than theirs:
whereas in Borwein and Girgensohn (1994) the existence result is proved for almost allq

close enough to 1 only, we prove this for almost all1
2 6 q < 1.

2. Fourier analysis and solutions for special values ofq

In this section we shall studyL1-solutions of (13) by means of Fourier transform. A function
y(t) ∈ L1(−∞, ∞) is called anL1-solution of (13), if it satisfies (13) for almost allt ∈ R.
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Denote the Fourier transform of a functiony(t) ∈ L1(−∞, ∞) by f (p) = F [y(t)]

f (p) = F [y(t)] =
∫ ∞

−∞
y(t)eitp dp

and the inverse Fourier transform byF−1(f (p)) = y(t)

F−1[f (p)] = 1

2π

∫ ∞

−∞
f (p)e−itp dp.

Theorem 1. (a) There exists, at most, one non-trivialL1-solution y(t) of (13) up to
normalization.

(b) If such a solution exists, it has compact support and

suppy(t) ⊂
[
− q

1 − q
,

q

1 − q

]
.

(c) The Fourier transformF [yq(t)] = fq(p) of y(t) = yq(t) is given by

f (p) = fq(p) = A

∞∏
n=0

cos2( 1
2qnp) (16)

whereA = f (0) = ∫ ∞
−∞ y(t) dt 6= 0 and the infinite product converges for allp.

Proof. As was mentioned already parts (a) and (b) follow from Daubechies and Lagarias
(1991) or Baron and Volkmann (1993). Part (c) can be checked by direct computation. In
fact, applying Fourier transform to (13) and using the formula

F [y(αt + β)] = 1

α
e

−iβp

α f (
p

α
) α, β ∈ R

we obtain

1

q
f

(
p

q

)
= 1

4q
(2 cosp + 2)f (p) = 1

q

1 + cosp

2
f (p)

or

f

(
p

q

)
=

(
cos2

p

2

)
f (p) (17)

and finally

fq(p) = f (p) = A

∞∏
n=0

[cos( 1
2qnp)]2.

Denote byf 0
q (p) the solution of (17) normalized by conditionf 0

q (0) = ∫ ∞
−∞ y(t) dt = 1.

Corollary 1. (Garsia 1962, Baronet al 1994). A useful identity valid for all integersk > 2
follows from (17)

f 0
q (p) = f 0

qk (p)f 0
qk (qp) · · · f 0

qk (q
k−1p). (18)

For q = 1
2 equation (14) takes the form

y(t) = 1
2y(2t − 1) + y(2t) + 1

2y(2t + 1) (19)

and its uniqueL1-solution normalized under condition
∫ ∞
−∞ y(t) dt = 1 is the function

y 1
2

= max{0, 1 − |t |}, i.e. Scḧonberg’sB1-spline (see figure 1(a)). Using that fact and (18)
we obtain:
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Corollary 2. (Garsia 1962, Baronet al 1994). For q = ( 1
2)1/k the unique up to

normalization solution of (13) is given by formula

y
2− 1

k
(t) = B1(t) ∗ B1(2

− 1
k t) ∗ · · · ∗ B1(2

− k−1
k t).

This solution is 2(k−1) times differentiable. Figures 1(b) and (c) showyq(t) for q = 2−1/2

andq = 2−1/3.

Figure 1. Solutionsyq(t) of (13) for q = 2−1/k , k = 1, 2, 3. (a) q = 2−1, (b) q = 2−1/2, (c)
q = 2−1/3.

Remark 1. The probabilistic meaning of (16) is transparent. Define two independent
identically distributed (IID) random variables

Zi = 1
2(ηi

0 + qηi
1 + · · · + qnηi

n + · · ·) i = 1, 2 (20)

whereηi
k are IID Bernoulli random variables which accept values(+1) and(−1) with equal

probabilities 1
2. Define

Z = Z1 + Z2. (21)

The characteristic function ofZi (i = 1, 2) is
∏∞

n=0 cos( 1
2qnp) and the characteristic function

of Z is
∏∞

n=0 cos2( 1
2qnp).

Hencey(t) is the density function ofZ if it exists.

Corollary 3. Suppose thaty(t) is a non-trivial L1-solution of (13). Denote byU0(ε)

an ε-neighbourhood of the point zero, and byU−1(ε) and U1(ε) right and left half-ε-
neighbourhoods of the points− q

q−1 and q

q−1, respectively. Denote also

U+
i (ε) = {t ∈ Ui(ε)|y(t) > 0} i = −1, 0, 1.

Then for anyε > 0 andi = −1, 0, 1 mes(U+
i (ε)) > 0.
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Proof. Denote by8Z(t) the distribution function ofZ and by P the corresponding
probability measure:P [a, b] = 8Z(b)−8Z(a). From remark 1 it follows thatP(Ui(ε)) > 0
for anyε > 0 andi = −1, 0, 1. On the other hand, the existence of a non-trivialL1-solution
of (13) means that8Z(t) is absolutely continuous, with density functiony(t) and

P(Ui(ε)) =
∫

Ui(ε)

y(t) dt.

Hence, for anyε > 0y(t), is positive on subsets ofUi(ε), i = −1, 0, 1, of positive measure,
that is mes(U+

i (ε)) > 0.

3. Upper bounds for the smoothness of solutions and nonexistence ofL1-solutions for
0 < q < 1

2

We begin with a simple upper bound for the degree of smoothness of the solutions of (14).

Theorem 2. If y(t) is a non-trivial,k times differentiable, compactly supported solution of
(14) then

k 6 −1 + 2
ln 2

ln λ
. (22)

Proof. According to Daubechies and Lagarias (1991) suppy(t) ⊂ [− 1
λ−1, 1

λ−1]. Define a
new functionz(t) as a shift ofy(t): y(t) = z(t − 1

λ−1) and denoteτ = t − 1
λ−1. Then

suppz(τ ) ⊂ [0, 2
λ−1] and z(τ ) satisfies the equation

z(τ ) = λ[ 1
4z(λτ) + 1

2z(λτ − 1) + 1
4z(λτ − 2)]. (23)

Near the origin(τ = 0) the second and third terms on the right-hand side of (23) vanish:
z(λτ − 1) = 0 andz(λτ − 2) = 0, and (23) reduces to a two-term equation

z(τ ) = λ

4
z(λτ). (24)

The general solution of the two-term functional equation

z(τ ) = az(ατ) (25)

is well known (Peluch and Sharkovsky 1974):

z(τ ) = |τ |γ


K+

(
ln |τ |
ln |α|

)
τ > 0

K−

(
ln |τ |
ln |α|

)
τ < 0

(26)

whereK+, K− are arbitrary one-periodic functions and

γ = − ln |a|
ln |α| . (27)

In particular, for (24)

γ = − ln λ
4

ln λ
= −1 + 2

ln 2

ln λ
. (28)

If z(τ ) 6≡ 0, then for any sufficiently smallε > 0, according to corollary 3,z(τ ) 6≡ 0
for 0 < τ < ε and thusK+ 6≡ 0 for 0 < t < ε.

It follows then from (26) that the degree of smoothness ofz(τ ) is no more thanγ and
(28) completes the proof.

In a similar manner, the following result can be proved in the case 0< q < 1
2.
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Theorem 3. (Baronet al 1994) If 0< q < 1
2, then (14) does not possess any non-trivial,

bounded,L1-solution. (In particular, it does not possess a non-trivial, continuous, compactly
supported solution.)

Proof. If 0 < q < 1
2, then λ > 2 and suppy(t) ⊂ [− 1

λ−1, 1
λ−1] ⊂ [−1, 1]. Take

|t | < 1
λ
(1 − 1

λ−1) (such at exists because 1− 1
λ−1 > 0, for λ > 2). Then

|λt ± 1| > 1 −
(

1 − 1

λ − 1

)
= 1

λ − 1

and (14) reduces to the two-term equationy(t) = λ
2y(λ(t)), a general solution of which is

given by formula (26) with

γ = − ln λ/2

ln λ
= −1 + ln 2

ln λ

under the assumption of the theoremλ > 2 and thus−1 < γ < 0. In addition, if y(t)

is a non-trivial L1-solution of (14), then, for any sufficiently smallε > 0, according to
corollary 3,y(t) > 0 on the setU+

0 (ε) of positive measure. ThusK+ or K− 6≡ 0 onU+
0 (ε).

It follows now from (26) thaty(t) is unbounded onU+
0 (ε). This contradiction completes

the proof.

Remark 2. Compare the results of theorem 2 and corollary 2 in the caseq = ( 1
2)1/k (i.e.

λ = 21/k). According to corollary 2y2−1/k (t) is 2(k − 1) times differentiable, whereas,
according to theorem 2, its degree of smoothness is at most

−1 + 2 ln 2

ln(21/k)
= 2k − 1.

This means that the bound (22) cannot essentially be improved.

4. Existence of continuous compactly supported solutions for12 6 q < 1 and their
smoothness

Looking at corollary 2 one might be inclined to expect that a continuous, compactly
supported solution of (13) exists for allq ∈ [ 1

2, 1) and its smoothness cannot decrease
whenq is increasing. However, it turns out that this is not the case. There exist exceptional
values ofq ∈ [ 1

2, 1) for which continuous, compactly supported solutions of (13) do not
exist.

These exceptional values ofq are reciprocal to Pisot–Vijayaraghavan numbers (PV
numbers).

Definitions. A PV numberis a real algebraic integer (that is a root of a polynomial with
integer coefficients and the coefficient of the highest power is unity) which is greater than
1 and all of whose conjugates have absolute value less than 1.

For example, the polynomialx2−x−1 has rootsx1,2 = 1
2(1±√

5). The algebraic integer
x1 = 1

2(1+√
5) is greater than 1 and its conjugatex2 = 1

2(1−√
5) is less than 1. Hence the

‘golden ratio’ϕ = 1
2(1+ √

5) is a PV number, and its reciprocalq = 1
ϕ

=
√

5−1
2 = 0.618 is

an ‘exceptional value’. It is known (Siegel 1944) that the smallest PV numberx3 = 1.324. . .

is the positive rootx3 of the equationx3 − x − 1 = 0, and its reciprocalq = 1/x3 ≈ 0.755
is an ‘exceptional value’.

A Salem numberis a real algebraic integer greater than 1, whose other conjugates have
modulus at most equal to 1, with at least one having a modulus equal to one. There are
no examples of Salem numbers as simple as the ones given for PV numbers, because there
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exist no Salem numbers of degree less than 4. It is an open question whether there is a
sequence of Salem numbers, which tends to 1, or on the contrary, whether the setT of
Salem numbers is closed on the real line. The smallest known Salem number is 1.176. . .,
with its reciprocalq = 0.850. . . (Boyd 1977).

Theorem 4. (a) For all q reciprocal to a PV number equation (13) does not possess a
compactly supported continuous solution. (Moreover, it does not even possess anL1-
solution for these values ofq.)

(b) For all q reciprocal to a Salem number equation (13) does not possess a compactly
supported continuous solution.

Proof. (a) For anyL1-solutionyq(t) of (13) its Fourier transform is given by formula

fq(p) = A

[ ∞∏
n=0

cos( 1
2qnp)

]2

and tends to zero asp → ∞, according to the Riemann–Lebesque lemma. On the other
hand, for anyq reciprocal to a PV number Erdös (1939) proved that

lq(p) =
∞∏

n=0

cos( 1
2qnp)

does not tend to zero, asp → ∞. This contradiction proves part (a).
(b) Suppose a continuous compactly supported solutionyq(t) of (13) exists forq

reciprocal to a Salem number. Clearly thatyq(t) belongs to both spacesL1(R) andL2(R)

together. Therefore theL2-Fourier transform ofyq(t) belongs toL2(R) and coincides with
its usualL1-Fourier transformF [yq(t ] = fq(p). Thusfq(p) ∈ L2(R).

On the other hand, it is known (Kahane 1971) that for anyε > 0 and someC > 0

|lq(p)| >
C

pε

if q is reciprocal to a Salem number. Hence

|fq(p)| >
C

p2ε

andfq(p) /∈ L2(R). This contradiction proves the theorem.

Remark 3. It is known (Bertin et al 1992) that there are infinitely many PV numbers
between 1 and 2 and therefore there are infinitely many exceptional values ofq between1

2
and 1.

Although there exist exceptional values ofq in ( 1
2, 1) the following is true.

Theorem 5. (a) For almost all12 6 q < 1, a continuous compactly supported solution of
(13) exists.

(b) Moreover, there exists a sequenceβk ∈ (1/2, 1), βk → 1, such that for almost all
q ∈ (βk, 1), (13) possesses a compactly supported solution with 2(k − 1) derivatives.

Proof. Part (b) is a consequence of Erdös’s result (Erd̈os 1940), who proved that for any
positive integerk there exists a sequenceβk → 1, such that the set of pointsq of the
interval (βk, 1) for which

lq(p) = o(|p|−k) p → ∞
does not hold, is a set of measure zero.

(a) Solomyak (1995) has proved recently that in factlq(p) ∈ L2(R) for almost allq ∈
( 1

2, 1). Then, according to (17)fq(p) = A[lq(p)]2 ∈ L1(R) and thusyq(t) = F−1[fq(p)]
is a continuous compactly supported solution of (13).
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5. Conclusions

Let us conclude with a short discussion of the possible consequences of our results for
the physical properties of disordered systems. First of all our results show that there is a
qualitative difference between the range 0< q < 1

2 and 1
2 < q < 1. For the former case the

integral distribution function is generically singular continuous, e.g. it has a Cantor set as
support. In case where we consider the distribution of low energy excitations this implies
that the specific heat as a function of the temperature may possess a hierarchy of maxima,
also called Schottky anomalies. For the latter case it is generically absolutely continuous.
This usually implies (again for the specific heatc(T )) a smooth temperature dependence
of c(T ) with one maximum, e.g. for the special valueq = 1

2 the exact solution of the
functional equation isy1/2(t) = max{0, 1 − |t |} which yields

c(T ) ≈ aT − bT 2 a > 0, b > 0

for a temperature range where the right-hand side of the last formula is sufficiently positive.
The role of the non-generic values ofq for which absolute continuity does not hold in
this latter range is not quite obvious, because it is probably not possible to realize such
special non-generic values in an experiment. Let us finally mention a more direct method
to explore e.g. the distribution of excitation energies, which is a scattering experiment
(neutrons for instance). Here it would be interesting to investigate the qualitative structure
of the corresponding density function, also called density of states (DOS), for different
types of disordered systems. Unfortunately, such an experiment cannot distinguish between
singular continuous and absolutely continuous distribution functions due to finite resolution,
but nevertheless the mathematically singular continuous case should manifest itself in a
rather ‘bizarre’ DOS whereas the absolutely continuous case should yield a rather smooth
DOS behaviour.
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