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Abstract. The functional equation
1
g = [yt +D+y@t -1 +2y@1)] O<g<1 teR

is associated with the appearance of spatially chaotic structures in amorphous (glassy) materials.
Continuous compactly supported solutions of the above equation are of special interest. We shall
show that there are no such solutions foe @ < % whereas such a solution exists for almost

all % < ¢ < 1. The words ‘for almost al§’ in the previous sentence cannot be omitted. There

are exceptional values @f in the interval % 1] for which there are no integrable solutions.

For exampleg = (/5 — 1)/2 ~ 0.618, which is the reciprocal of the ‘golden ratio’ is such

an exceptional value. More generally,jifis any Pisot—Vijayaraghavan number, or any Salem
number, then; = 1~1 is an exceptional value.

1. Introduction and formulation of the main result

1.1. Physical background

Since the establishment of the KAM theory (Arnold and Avez 1968, Moser 1973) for
Hamiltonian dynamics and the discovery of strange attractors by Ruelle and Takens (1971)
for dissipative dynamics, nonlinear dynamics has become an intensively studied field in
physics. One of the most interesting features of nonlinear dynamics is the existence of
chaotic motion which can occur e.g. in Hamiltonian systems with more than one degree of
freedom. Although Hamiltonian equations of motion are deterministic, there exist initial
points x(0) = (r1(0), ..., rs(0); p1(0), ..., ps(0)) € R* of finite Lebesgue measure in

the phase space of a particle system witegrees of freedom for which the trajectories
x(z, x(0)) are chaotic in time. The chaotic behaviour is best described for two-dimensional,
nonlinear mapy':

T : (x,, yn) - (-anrlg yn+1) nez (1)

with (x,, y,) € R2. This corresponds to a dynamical system with discrete #meThe
chaotic behaviour of the dynamics defined by (1) originates from the embedding of the
Bernoulli shift (Moser 1973), i.e. there exist:

(i) an alphabetA = {a3, ay, ...} (which depends o)

(i) a domainG c R? and an embedding

0:G—> S (2)
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whereS is the space of doubly-infinite sequenee®f symbolso, € A
S={o=(..0_2,0_1,00,01,02...)|0, € A} 3)
(iif) a symbolic dynamical system (Bernoulli shift)
sic€eS—>s(o)=0'€S 4)

where

O—r; = (Gl)m = Om-1

such that the original dynamic restricted to the domai C R? can be obtained from
the symbolic dynamics as follows:

TIG=¢ losog. 5)

Equation (5) is probably one of the most important results for nonlinear chaotic
dynamics. Choosing for the initial sequene® a random sequence of symbais € A,
the symbolic dynamics generates new sequence8’ = s'(c®), v € Z which are
random and which result in a chaotic dynamics7oflue to (5). One of us (Reichert and
Schilling 1985, Schilling 1992) has recently shown that chaotic behaviour is not restricted
to temporal phenomena, but may also occur in space. This spatial chaos has been used in
order to interpret the existence of amorphous structures in solid materials. Let us consider a
system ofN particles with coordinates, € R,n = 1,2,..., N. The particles will interact
with each other. The corresponding potential energy (s, ro, ..., ry). A special type of

configurations® = (n\*, ri, ..., r\), @ = 1,2,..., M(N) are the solutions of

oV
ory

(=0 (6)

i.e. r® are stationary configurations. For a certain class of functiéng was proven
(Reichert and Schilling 1985, Schilling 1992) that faf = oo there exists an alphabet
A = {4+, —} such that there is a one-to-one correspondence betw&eand all doubly-
infinite sequence® = (...0_2,0_1,00,01,02...),0, € A. This result means that the
particle positions in a stationary configuratioff’ can be obtained from:

r® = (f(0)a (7

whereos depends omx. Choosing again a random sequenceaesults in a spatially chaotic
configurationr @ given by (7).

Since many physical quantities, e.g. the distance between particles, excitation energies,
etc depend on the coordinated’, these quantities are uniquely specifieddoylue to (7).
For a certain class of potentials (Reichert and Schilling 1985, Schilling 1992), one finds
a linear relationship. Len, be one of these local physical quantities. Then it has been
shown that

]

Ap(r®) = Z N (Onsj — On_j-1) nez 8)

j=1

where 0< n < 1 ando, = 0, ().

Here a comment is in order. The condition<0n < 1 follows from the energetic
stability of the model considered and for that special case the one-to-one correspondence
betweenr©@ and o («) only holds for 0< 5 < % For more details see Reichert and
Schilling (1985) and Schilling (1992). Since there is no general reason why this must be
fulfilled for other models, we will discuss the full range<On < 1, for which A, (*@) is

finite.
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Since almost all sequencesare neither periodic nor almost periodic, the valugs
for n € Z will be distributed in a non-trivial manner. For given which determinesr
uniquely, the corresponding distribution function is

N
Po(A) = lim D 8(A = Ay(0) ©)
n=—N

where A, (o) is defined by the right-hand side of (8). For a generic sequenahere the
symbols+ and— occur with probability%, it has been assumed (Schilling 1992) that there
exists a kind of ‘ergodicity’ (also called ‘self-averaging’ in physics) which leads to

Pr(A) =) w(0)8(A — Ag(0)) =: P(A) (10)

o

for almost allo. The probabilityw(c) is given by

w(o) = [ [wolon)

with
wo(oy) = 3 for o, € {+, —}. (11)

Sinceo, is interpreted now as a random variable it is easy to derifisnational equation
for P(A) which is (Schilling 1992)

P(A) = 4—];7{2P(A)+P(A+2)+P(A—2)}. (12)

Because the distribution functioA(A) describes the distribution of, for example, nearest
distances, excitation energies, etc, it is of physical importance. In the case of excitation
energies, the correspondi®yA) determines the corresponding specific heat. Therefore, it
is of primary interest to study the solutions of (12) as a function @fhich is a parameter
uniquely determined by the functiol (Reichert and Schilling 1985). In line with our
assumptionsgcompactly supported continuous solutionis(12) are of special interest.

1.2. Formulation of the main result

Rewrite (12) in the form

1
y(gt) = @[y(t +D 4yt —-D+2y@)] 0<g<1 (13)

with n replaced byg in order to stress the analogy withtdifference equations theory.
The existence and non-existence of continuous compactly supported solutions of (13) (as a
function of g) was intensively studied in Baron (1988), Baron and Volkmann (1993), Baron
et al (1994), Morawiec (1993) anddrg-Rob (1994).

Equation (13), rewritten in the form

y() = Mgyt = 1) + 3y(0) + 3y (hr + 1] (14)
wherer = 1/¢, is a special case of the two-scale difference equation or refinement equation

1
y(t) = Zajy(ott - B8) a>1 B e R (15)
j=0
studied in Daubechies and Lagarias (1991), Dezfadl (1995) and Derfel (1989).

An absolutely integrable function(r) € L'(—oo, oo) is called anL!-solution of (15),
if it satisfies (15) for almost alt € R.
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DenoteA = (1/@) Z;.:O a; and suppose thak = 1, which holds in case of (14). The
following important result was proved in Daubechies and Lagarias (1991): proxided,,
any L-solution of (15) is compactly supported and unique (up to normalization).

A similar result concerning equation (13) was proved in Baron and Volkmann (1993).

The non-existence of compactly supported continuous solutions for ‘small’ values of
g was repeatedly mentioned in the the literature. Such a non-existence result was proved

for 0 < g < 3 by one of us, then for 6< ¢ < v/2— 1 ~ 0.414 by Baron (1994), for

0<q < (1—+2+4)/3 ~ 0.442 by Morawiec (1993), and recently for9¢q < % by
Baronet al (1994).

On the other hand, except for the cages: 27", n e N, no non-trivial solutions of
(13) have been known up till now.

(If ¢ = 5 thenyy»(t) = max{0, 1 — |¢[}; this is the SchnbergB;-spline. Ifg = (3)Y/,
n=273,...then

1 k—1
Yyt (t) = B1(t) * B1(27kt) % ---x B1(2” % 1)

(Baronet al 1994)).

The goal of this paper is to prove that:

(i) A continuous compactly supported solution of (13) exists for aImosg alg < 1.

Moreover, there exists a sequenge — 1, such that for almost alf € (B, 1)
equation (13) possesses a compactly supported solution With 2) derivatives.

(i) The words for ‘almost all' in the above statement cannot be omitted. There are
exceptional values af in the interval% < ¢ < 1, for which noL;-solution of (13) exists.

For instanceg; = IST* ~ 0.618 (the reciprocal of the ‘golden ratio’) ard ~ 0.755 (the
reciprocal of the positive root of the equatioh — x — 1 = 0) are such exceptional values.

More generally, ifs is any Pisot—Vijayaraghavan number, or any Salem number, then
g = A~1is an exceptional value.

Above result combined with the one of Barehal (1994) shows that in the parameter
interval 0< g < 1 the pointg = % defines the threshold between the existence and the non-
existence of continuous compactly supported solutions of (13). This exhausts the problem
of the existence of continuous compactly supported solutions of (13), in some sense.

The rest of the paper is organized as follows. Statements (i) and (ii) are proved in
section 4 (theorem 5 and theorem 4, respectively). The proof is based o8'€(d939,
1940) results on infinite Bernoulli convolutions, and recent developments regardiag'€rd
problem due to Solomyak (1995). Fourier analysis of (13) and its reduction tsErd
problem is given in section 2.

In section 3 we obtain upper bounds for the smoothness of solutions of (13). Baron
et al's (1994) theorem on the non-existence of boundetsolutions, for 0< ¢ < 1, is
obtained as a consequence of these estimates.

When this work was close to completion an interesting related paper (Borwein and
Girgensohn 1994) was brought to our attention by Professor K Baron. Borwein and
Girgensohn’s approach is similar to ours and, in particular, theorem 4(a) was proved in
Borwein and Girgensohn (1994). However, our existence theorem is stronger than theirs:
whereas in Borwein and Girgensohn (1994) the existence result is proved for almgst all
close enough to 1 only, we prove this for aImost%aH; q < 1.

2. Fourier analysis and solutions for special values of

In this section we shall studi*-solutions of (13) by means of Fourier transform. A function
y(t) € L*(—o00, c0) is called anL-solution of (13), if it satisfies (13) for almost alle R.
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Denote the Fourier transform of a functigir) € L*(—oo, o0) by f(p) = F[y(1)]

f(p) = Fly@®)] = / y()E'" dp

and the inverse Fourier transform By 2(f(p)) = y(¢)
1 (> -
Ff(p] = 5 /_Oo f(p)e "’ dp.

Theorem 1 (a) There exists, at most, one non-triviat-solution y(r) of (13) up to
normalization.
(b) If such a solution exists, it has compact support and

q q

(c) The Fourier transforn¥ [y, (1)] = f,(p) of y(t) = y,(¢) is given by

f() = fy(p) = A] [ coS (34" p) (16)

n=0
whereA = f(0) = ffooo y(t) dr # 0 and the infinite product converges for all

Proof. As was mentioned already parts (a) and (b) follow from Daubechies and Lagarias
(1991) or Baron and Volkmann (1993). Part (c) can be checked by direct computation. In
fact, applying Fourier transform to (13) and using the formula

—ipp

1
Fly(ar + B)] = aeTf(§> @, B eR

we obtain
= (p> = —(2cosp+2)f(p) = *ﬂf@)
9" \q 4q q 2
or
P\ _ p
f <q) = <0052 §> f() (17)
and finally

f4(p) = f(p) = A] |lcos3q" p)]*.
n=0

Denote by/(p) the solution of (17) normalized by conditigff (0) = /2, y(+) dr = 1.

Corollary 1. (Garsia 1962, Barat al 1994). A useful identity valid for all integeris > 2
follows from (17)

1) = 13 [ ap) - f3(q" T p). (18)
Forg = % equation (14) takes the form
y() =3y — D+ y(2) + Jy2 + 1) (19)

and its uniqueL!-solution normalized under conditioy‘if"ooy(t) dr = 1 is the function
y1 = max0, 1 — |z]}, i.e. Scldonberg’sBi1-spline (see figure &)). Using that fact and (18)
we obtain:
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Corollary 2. (Garsia 1962, Baroret al 1994). Forg = (3)Y* the unique up to
normalization solution of (13) is given by formula

¥, 1 (0) = Bi(t) * Bi(27F1) % - % By(2- T 1),
This solution is 2 — 1) times differentiable. Figures k) and €) showy, (¢) for ¢ = 27/2
andg = 2713,

(a) vy v

y(2t)

/

T(2t—1)

-1 1 t
(b) y
1
oAsx
3 2 1 1 2 3 t
(c) v
1
0.5
4 3 2 1 1 2 3 4 t

Figure 1. Solutionsy, (1) of (13) forq = 27Y*, k =1,2,3. @) ¢ =27%, (b) ¢ = 272, (¢)
q= 2713,

Remark 1 The probabilistic meaning of (16) is transparent. Define two independent
identically distributed (1ID) random variables
Zi=so+ani+--+q"m+-) i=12 (20)
wheren; are 11D Bernoulli random variables which accept valged) and(—1) with equal
probabilities. Define
Z=27Z1+ 7. (21)
The characteristic function o; (i = 1,2)is[],-, Cos(%q”p) and the characteristic function
of Z is [[52ycog(3q" p).
Hencey(z) is the density function of if it exists.
Corollary 3. Suppose that(t) is a non-trivial L1-solution of (13). Denote byUp(e)

an e-neighbourhood of the point zero, and Wy ;(¢) and Ui(e) right and left halfe-

neighbourhoods of the pointsqi_1 and qi_l respectively. Denote also

Uf(s) ={r e U;(e)|y() > 0} i=-101
Then for anye > 0 andi = —1,0,1 mes(U;*(¢)) > 0.
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Proof. Denote by ®;(r) the distribution function ofZ and by P the corresponding
probability measureP[a, b] = ©7(b)—dz(a). From remark 1 it follows thaP (U;(¢)) > 0
foranye > 0 andi = —1, 0, 1. On the other hand, the existence of a non-trigzi&isolution
of (13) means tha®;(¢) is absolutely continuous, with density functigi) and

P(Ui(e)) = / y(t) dt.
Ui(e)
Hence, for any > 0y(z), is positive on subsets &f;(¢), i = —1, 0, 1, of positive measure,
that is mes(U;* (¢)) > 0.

3. Upper bounds for the smoothness of solutions and nonexistence bt-solutions for
O<gqg< %

We begin with a simple upper bound for the degree of smoothness of the solutions of (14).

Theorem 2 If y(¢) is a non-trivial,k times differentiable, compactly supported solution of
(14) then

In2

k< —-142—. 22
+ Inx (22)
Proof. According to Daubechies and Lagarias (1991) supp C —A%l, A—fl]. Define a
new functionz(r) as a shift ofy(r): y(t) = z(t — ;%;) and denoter = ¢ — ;1;. Then
suppz(r) C [0, Tfl] and z(r) satisfies the equation
2(r) = M[3z(01) + 32T — 1) + (AT — 2)]. (23)

Near the origin(z = 0) the second and third terms on the right-hand side of (23) vanish:
z(At — 1) =0 andz(At — 2) = 0, and (23) reduces to a two-term equation

72(1) = %z(kr). (24)
The general solution of the two-term functional equation
z(t) = az(at) (25)
is well known (Peluch and Sharkovsky 1974):
“(n) o
z2(t) = |t)” (26)

K_(In|r|) <0
In|a|

whereK ., K_ are arbitrary one-periodic functions and

In|al
=— . 27
In|o| @7)
In particular, for (24)
In% In2
=—-—4=_14+2__. 28
v In A + InA (28)

If z(r) # 0, then for any sufficiently small > 0, according to corollary 3;(r) # 0
forO<t<eandthusk, #£0for0O<t < e.

It follows then from (26) that the degree of smoothness @f is no more tharny and
(28) completes the proof.

In a similar manner, the following result can be proved in the caseq0< %
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Theorem 3 (Baronet al 1994) If 0 < ¢ < 2, then (14) does not possess any non-trivial,
bounded L!-solution. (In particular, it does not possess a non-trivial, continuous, compactly
supported solution.)

Proof. 1f 0 < ¢ < %, thena > 2 and supp(t) C [—;2;, ;%] € [-1.1]. Take
lt] < F(1— ;) (such ar exists because + ;%; > 0, for » > 2). Then

1 1
e+l >1-(1- — )=_——
A—1) a-1

and (14) reduces to the two-term equatigi) = %y(k(r)), a general solution of which is
given by formula (26) with

Inx/2 In2
Inn 1+ Inx
under the assumption of the theorem> 2 and thus—1 < y < 0. In addition, if y(z)
is a non-trivial L -solution of (14), then, for any sufficiently small > 0, according to
corollary 3,y(r) > 0 on the seU, (¢) of positive measure. Thuk or K_ # 0 onUj (¢).
It follows now from (26) thaty(¢) is unbounded orU0+(s). This contradiction completes
the proof.

Remark 2 Compare the results of theorem 2 and corollary 2 in the gase(3)* (i.e.
L = 2VF). According to corollary 2y,-1(t) is 2(k — 1) times differentiable, whereas,
according to theorem 2, its degree of smoothness is at most
14 2In2
In(21/k)
This means that the bound (22) cannot essentially be improved.

=2k —1

4. Existence of continuous compactly supported solutions fo%' < g < 1 and their
smoothness

Looking at corollary 2 one might be inclined to expect that a continuous, compactly
supported solution of (13) exists for ajl [%, 1) and its smoothness cannot decrease
wheng is increasing. However, it turns out that this is not the case. There exist exceptional
values ofg € [%, 1) for which continuous, compactly supported solutions of (13) do not
exist.

These exceptional values qf are reciprocal to Pisot—Vijayaraghavan numbers (PV
numbers).

Definitions A PV numberis a real algebraic integer (that is a root of a polynomial with
integer coefficients and the coefficient of the highest power is unity) which is greater than
1 and all of whose conjugates have absolute value less than 1.

For example, the polynomiaf —x —1 has roots; » = %(11«/3). The algebraic integer
x1 = 3(1++/5) is greater than 1 and its conjugate= 1(1—+/5) is less than 1. Hence the

‘golden ratio’ = 1(1++/5) is a PV number, and its reciprocgl= 1 = ¥5- — 0,618 is
an ‘exceptional value'. Itis known (Siegel 1944) that the smallest Pv numwyerl.324. ..
is the positive rootcs of the equationc® — x — 1 = 0, and its reciprocay = 1/x3 ~ 0.755
is an ‘exceptional value’.

A Salem numbeis a real algebraic integer greater than 1, whose other conjugates have
modulus at most equal to 1, with at least one having a modulus equal to one. There are
no examples of Salem numbers as simple as the ones given for PV numbers, because there
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exist no Salem numbers of degree less than 4. It is an open question whether there is a
sequence of Salem numbers, which tends to 1, or on the contrary, whether theoset
Salem numbers is closed on the real line. The smallest known Salem numb#76s.1,

with its reciprocalg = 0.850. .. (Boyd 1977).

Theorem 4 (a) For allg reciprocal to a PV number equation (13) does not possess a
compactly supported continuous solution. (Moreover, it does not even possess an
solution for these values af.)

(b) For allg reciprocal to a Salem number equation (13) does not possess a compactly
supported continuous solution.

Proof. (a) For anyL!-solutiony, () of (13) its Fourier transform is given by formula
00 2
.@(p>=14[IIcoa;q"p{
n=0

and tends to zero ag — oo, according to the Riemann-Lebesque lemma. On the other
hand, for anyg reciprocal to a PV number Edd (1939) proved that

ly(p) =[Jcot34"p)
n=0

does not tend to zero, gs— oo. This contradiction proves part (a).

(b) Suppose a continuous compactly supported solutigin) of (13) exists forg
reciprocal to a Salem number. Clearly thats) belongs to both spacds'(R) and L?(R)
together. Therefore the2-Fourier transform ofy, () belongs toL2(R) and coincides with
its usualL*-Fourier transform#[y, (1] = f,(p). Thus f,(p) € L?(R).

On the other hand, it is known (Kahane 1971) that for any 0 and someC > 0

llg(p)l > —

&

if g is reciprocal to a Salem number. Hence
C
|fq(P)| > ﬁ

and f,(p) ¢ L?(R). This contradiction proves the theorem.

Remark 3 It is known (Bertinet al 1992) that there are infinitely many PV numbers
between 1 and 2 and therefore there are infinitely many exceptional valtqebelﬁveen%
and 1.

Although there exist exceptional values pin (%, 1) the following is true.

Theorem 5 (a) For almost al% < g < 1, a continuous compactly supported solution of
(13) exists.

(b) Moreover, there exists a sequemtece (1/2,1), B — 1, such that for almost all
q € (B, 1), (13) possesses a compactly supported solution with-21) derivatives.

Proof. Part (b) is a consequence of Baks result (Erds 1940), who proved that for any
positive integerk there exists a sequengg — 1, such that the set of pointg of the
interval (B¢, 1) for which

L(p)y=o(pl™  p—oo
does not hold, is a set of measure zero.
(a) Solomyak (1995) has proved recently that in fg¢p) € L2(R) for almost allg €
(3,1). Then, according to (17),(p) = A[l,(p)]*> € L*(R) and thusy,(t) = F~[f,(p)]
is a continuous compactly supported solution of (13).
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5. Conclusions

Let us conclude with a short discussion of the possible consequences of our results for
the physical properties of disordered systems. First of all our results show that there is a
qualitative difference between the range@ < % and% < g < 1. For the former case the
integral distribution function is generically singular continuous, e.g. it has a Cantor set as
support. In case where we consider the distribution of low energy excitations this implies
that the specific heat as a function of the temperature may possess a hierarchy of maxima,
also called Schottky anomalies. For the latter case it is generically absolutely continuous.
This usually implies (again for the specific hed&f)) a smooth temperature dependence

of ¢(T) with one maximum, e.g. for the special valge= % the exact solution of the
functional equation ign/2(r) = max0, 1 — |¢|} which yields

o(T) ~ aT — bT? a>0, b>0

for a temperature range where the right-hand side of the last formula is sufficiently positive.
The role of the non-generic values gffor which absolute continuity does not hold in

this latter range is not quite obvious, because it is probably not possible to realize such
special non-generic values in an experiment. Let us finally mention a more direct method
to explore e.g. the distribution of excitation energies, which is a scattering experiment
(neutrons for instance). Here it would be interesting to investigate the qualitative structure
of the corresponding density function, also called density of states (DOS), for different
types of disordered systems. Unfortunately, such an experiment cannot distinguish between
singular continuous and absolutely continuous distribution functions due to finite resolution,
but nevertheless the mathematically singular continuous case should manifest itself in a
rather ‘bizarre’ DOS whereas the absolutely continuous case should yield a rather smooth
DOS behaviour.
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